
Propositional Probabilistic Planning-as-Satisfiability using Stochastic Local
Search

Nathan Robinson, Charles Gretton, Duc-Nghia Pham, and Abdul Sattar
SAFE Program, Queensland Research Lab, NICTA and

Institute for Integrated and Intelligent Systems, Griffith University, QLD, Australia
{nathan.robinson,charles.gretton,duc-nghia.pham,abdul.sattar}@nicta.com.au

Abstract
Recent times have seen the development of a number of plan-
ners that exploit advances in SAT(isfiability) solving tech-
nology to achieve good performance. In that spirit we de-
velop the approximate contingent planner PSLSPLAN. Our
approach is based on a stochastic local search procedure for
solving stochastic SAT (SSAT) representations of probabilis-
tic planning problems. PSLSPLAN first constructs an SSAT
representation of the n-timestep probabilistic plangraph for
the problem at hand. It then iteratively calls a stochastic lo-
cal search procedure to find a linear plan (sequence of ac-
tions) which achieves the goal (i.e. satisfies the SSAT for-
mula) with non-zero probability. Linear plans thus generated
are merged to create a single contingent plan. Successive it-
erations progress from deciding the outcomes of stochastic
actions in order to find a linear plan quickly, to sampling the
outcomes of actions. Consequently, PSLSPLAN efficiently
finds a linear plan which logically achieves the goal. Over
time it refines its contingent plan for likely scenarios. We
empirically evaluate PSLSPLAN on benchmarks from the
probabilistic track of the 5th International Planning Competi-
tion.

Introduction
Stochastic Boolean satisfiability (SSAT) is an extension of
Boolean satisfiability (SAT) that was developed to sup-
port reasoning about uncertainty. Just as SAT is a use-
ful formalism for solving deterministic planning problems,
SSAT is an useful formalism for solving probabilistic plan-
ning problems. Indeed, a number of state-of-the-art con-
tingent planners have been developed in the planning-as-
satisfiability paradigm. These operate on an SSAT repre-
sentation of the problem, in which the logical possibilities
for acting in a problem are encoded as a propositional con-
junctive normal form (CNF) formula. The quantified uncer-
tainty in the problem is captured by random variables in the
formula that occur true with a specified rational probabil-
ity. Existing SSAT-based contingent planners can be clas-
sified into two categories: (1) those that use Davis-Putnam-
Logemann-Loveland (DPLL) procedure (complete search),
and (2) those that use a stochastic local search (SLS).

In the first category, we have planners that borrow a
DPLL procedure for SAT directly, e.g., APPSSAT (Ma-
jercik 2006). Otherwise, we have planners that use a mod-
ified DPLL in which the target propositional formula in-

cludes variables whose truth values are determined proba-
bilistically. Examples of the latter include the SSAT solver
EVALSSAT (Littman, Majercik, & Pitassi 2001) – and the
approximate version of this SAMPLEEVALSSAT – and the
planners MAXPLAN (Majercik & Littman 1998a), ZAN-
DER (Majercik & Littman 2003), and DC-SSAT (Majer-
cik & Boots 2005). These modified DPLL procedures are
specialised to planning in the way they choose an active
variable during search. In particular, this is chosen using
the discrete timestep the variable describes, starting in the
first state and then moving out to the planning horizon. In-
tuitively such a variable ordering heuristic works because
planning problems are Markovian – i.e., when an action is
executed, the current state alone determines possible suc-
cessor states and the probability that they occur. Whether
the DPLL procedure is borrowed from the SAT community
or designed specifically for the SSAT case, standard pruning
techniques such as unit propagation and purification are em-
ployed. Also, in order to avoid repeating expensive compu-
tation in planning for contingencies, DPLL approaches use
techniques for caching solutions to subproblems (Majercik
& Littman 1998b). APPSSAT is the most unique solver
in this category of planners. It uses the DPLL-based SAT
solver ZCHAFF to find sequences of actions that achieve the
goal with non-zero probability. These are combined to form
a single contingent plan.

To the best of our knowledge, the only contingent plan-
ner in the category based on an SLS procedure is RANDE-
VALSSAT (Littman, Majercik, & Pitassi 2001). This uses a
preprocessing phase that restricts the search to a small set
of legal instantiations of random variables. Each instantia-
tion is generated by sampling the truth values of the random
variables. An SLS procedure based on WALKSAT (Selman,
Kautz, & Cohen 1994) then searches for a contingency plan,
greedily accommodating as many contingencies as possible.
The RANDEVALSSAT solver was not designed specifically
for planning, and unfortunately it is not an appealing tech-
nique in the planning setting because: (1) vanilla SLS al-
gorithms such as WALKSAT are notoriously bad at solving
planning problems, (2) the SLS heuristic guides RANDE-
VALSSAT to plans with many contingencies, rather than to
the optimal plan which may only require a few contingen-
cies; and (3) where the only plans that achieve the goal do
so with a low probability, the solver misses these without an



impractical amount of sampling.
Addressing advances in SAT technology more generally,

in recent times we have seen very promising developments
regarding Boolean satisfiability (SAT) approaches to solving
deterministic combinatorial problems. From a planning per-
spective, the most visible example of this is in the SAT based
planners SATPLAN-04/06 (Kautz, Selman, & Hoffmann
2006) which took first place in the optimal STRIPS (de-
terministic) track of the 2004 International Planning Com-
petition, and then tied for first place with SAT-based plan-
ner MAXPLAN (Chen, Xing, & Zhang 2007) in 2006.

Looking at SAT technology from the perspective of local
search, since the introduction of GSAT (Selman, Levesque,
& Mitchell 1992), SLS algorithms for SAT have been in-
tensively improved, now being able to solve many highly
complicated real-world problems including planning and
scheduling problems. SLS based SAT solving techniques
have proved to be very effective for large size problems, and
are the undisputed champions for solving hard random SAT
problems.1 Also, SLS was recently shown to solve large
highly structured problems when certain classes of vari-
able dependencies are made available to be exploited by the
search (Pham, Thornton, & Sattar 2007; 2008).

Taking recent advances in SAT technology for planning,
and SLS for structured SAT problems, this paper develops
PSLSPLAN, an SLS-based planning-as-satisfiability ap-
proach for approximate contingent planning in fully observ-
able propositional probabilistic planning problems. PSLS-
PLAN operates as follows:
• Where the given planning horizon is n, compute and

prune the n-timestep probabilistic plangraph.
• Compute an SSAT representation of the problem posed by

the plangraph.
• Compute a list of planning constraints, such as “only one

action can be executed in each timestep”, to be exploited
by the PSLSPLAN SLS procedure.

• Iteratively compute linear plans2 for progressively more
likely SAT encoded determinisations of the SSAT prob-
lem using a version of weighted-SLS that respects the
planning constraints. Successively generated plans are in-
corporated into a single contingent plan.
The rest of the paper is organised as follows. We de-

scribe the problem of propositional probabilistic planning
for the fully observable case. We then describe the proba-
bilistic plangraph data structure, and how the planning prob-
lem posed by it can be captured using an SSAT represen-
tation. We then describe PSLSPLAN, our SLS algorithm
for generating a contingent plan. Finally we present exper-
imental results before concluding with some remarks about
related and future work.

Probabilistic Planning
A propositional probabilistic planning problem is given in
terms of a finite set of stochastic actions A, deterministic

1http://satcompetition.org
2Sequences of actions that achieve the goal with non-zero prob-

ability.

outcomes O, and propositions P . A problem state s is a set
of propositions s ⊆ P . For p ∈ s we say proposition p
characterises state s. There is always a unique starting state
s0. The goal G is a set of propositions, and we say that state
s is a goal state iff G ⊆ s.

Every stochastic action has a precondition poss(a), which
is a set of propositions. An action can be executed at a state
s when poss(a) ⊆ s. We denote A(s) the set of actions that
can be executed at state s. When a ∈ A(s) is executed, na-
ture decides amongst a small set of deterministic outcomes
O(a) ≡ {o1, . . . , ok} what actually occurs. To keep this
exposition simple, for any two distinct actions ai 6= aj , if
outcome o is a possibility for ai then it cannot also be a
possibility for aj – i.e., if o ∈ O(ai) then o 6∈ O(aj). We
denote µa(oi) the (rational) probability that nature takes out-
come oi, and for all a we require

∑
oi∈O(a) µa(oi) = 1.

The outcome that nature chooses is observable, and its ef-
fect is given in terms of two lists of propositions called the
add list add(o) and delete list delete(o). If a proposition
is in the add list of o, then it cannot be in the delete list
and vice versa. If outcome o with add(o) := [p1, .., pn] and
delete(o) := [p1, .., pm] is executed at state s, then the resul-
tant state is (s ∪ add(o))\delete(o) – i.e., propositions from
add(o) are added to s, and those from delete(o) are removed
from s.

The solution to a probabilistic planning problem is a con-
tingent plan. This consists of an assignment of actions to
states at each discrete timestep up to the planning horizon
n. The optimal contingent plan is one which prescribes ac-
tions to states that maximise the probability that the goal
is achieved within n steps from the starting state s0. For
the purposes of this paper we say a plan fails, i.e. achieves
the goal with probability 0, in situations where it does not
prescribe an action. Computing the optimal plan for a prob-
lem is computationally intractable, and an important direc-
tion for research in the field is to develop heuristic mech-
anisms for generating small linear plans quickly (Littman,
Goldsmith, & Mundhenk 1998)

Probabilistic Plangraph
The plangraph is a data structure that was devised for the ef-
ficient GRAPHPLAN framework of deterministic planning in
STRIPS domains with restrictions on where negated propo-
sitions occur in the problem specification (Blum & Furst
1997). Since its inception, the plangraph has been adapted
to various richer classes of planning problems including that
of probabilistic planning. Here, we are concerned with the
probabilistic plangraph (Blum & Langford 1999), an adap-
tation of the plangraph for problems that feature quantified
uncertainty about the effects of actions. Like its determin-
istic counterpart, the probabilistic plangraph captures neces-
sary conditions for goal achievement, and is computation-
ally cheap to build, taking polynomial time in the number
of propositions and action outcomes. In addition, the size of
the generated graph is also polynomial in those factors. In
the rest of this section, we first describe the plangraph for
the deterministic setting and then demonstrate how to adapt
it for the probabilistic setting. Finally, we described a tech-



nique we adopt from (Blum & Langford 1999) for pruning
the probabilistic plangraph.

For a deterministic problem with actions A and proposi-
tions P , the plangraph is a directed layered graph.3 Vertices
are labelled with a timestamp, and either a proposition or an
action. Each layer is a set of vertices, each of which is la-
belled with the same timestamp. Additionally, vertices in a
layer have their labels drawn from a set of actions or a set
of propositions. For each timestep up to the planning hori-
zon, the graph comprises two layers, one action layer and
the other propositional. There is also a final propositional
layer for the goal. The propositional layer with timestamp t
contains a set of propositions. Elements in the powerset of
this are states which might be reachable in t timesteps from
s0. Similarly, an action layer with timestamp t contains the
set of actions which might be executable t steps into a plan.

In more detail, the first layer has a vertex for each proposi-
tion in the starting state s0. For every proposition and action
layer with the same timestamp t, the action layer has a ver-
tex for each action inA(s0), as well as an artificial action ap
for each p in the propositional layer. We define ap to have
the precondition that p is true, and the one (add) effect of
keeping it true. There is an arc from vertex labelled p in the
propositional layer to that labelled a in the action layer if p
is a precondition for a. For every action layer with times-
tamp t and propositional layer with timestamp t + 1, the
propositional layer has a vertex for each proposition that is
a positive effect of an action from the action layer. There is
an arc labelled positive from each action to propositions that
are add effects of that action. There is an arc labelled neg-
ative from each action to propositions that are delete effects
of that action.

A probabilistic plangraph is a simple adaptation of the
plangraph to planning problems that feature quantified un-
certainty about the effects of actions. In this case the action
layer comprises vertices from the stochastic actions. There
are outgoing positive and negative arcs from action vertices
for the add and delete effects of each deterministic outcome.
These arcs are labelled with the associated outcome, and the
probability of that outcome occurring. We adopt a simple
pruning mechanism from (Blum & Langford 1999) to re-
duce the size of the plangraph, and hence the solution space
that PSLSPLAN searches. In particular, we remove a ver-
tex from the plangraph if there is no path to a goal propo-
sition from that vertex. This is a simple pruning step that
is performed by iterating backward through the plangraph
from the goal layer.

Stochastic SAT
Here we review SSAT, the formalism on which our encod-
ing of the planning problem posed by an n-timestep prob-
abilistic plangraph is based. An SSAT problem 〈Qs, φ〉 is
defined in terms of a list of quantified boolean variables
Qs := Q1v1Q2v2, ..Qnvn and a propositional CNF formula
φ such that all variables in φ are quantified in Qs. A quanti-
fier Qi is either an existential ∃ or random Rr where super-

3A problem is deterministic when each action has only one out-
come which occurs with 100% certainty.

script r is a rational number 0 < r < 1. If a variable is ex-
istentially quantified we call it a choice variable, otherwise
it is randomly quantified and called a chance (or random)
variable. A problem is a SAT problem if all the quantifiers
in Qs are existential.

We write φ[v = >] for φ with v assigned to true and
φ[v = ⊥] for φ with v assigned to false. Writing • for the
empty list and Qv : Qs for a list of quantified variables with
head Qv and tail Qs, the value of an SSAT problem 〈Qs, φ〉
given an assignment α to the choice variables is given by
Algorithm 1. For an assignment α, we write α(p) for the
value, true > or false ⊥, assigned to p according to α.

Algorithm 1 Evaluating SSAT
eval(•, φ, α) = 0 if φ contains the empty clause
eval(•, φ, α) = 1 if there are no clauses in φ
eval(∃v : Qs, φ, α) = eval(φ[v = α(v)])
eval(Rrv : Qs, φ, α) = r · eval(φ[v = >])+

(1− r) · eval(φ[v = ⊥]))

For an assignment α to the choice variables, eval computes
the probability that the CNF φ will be satisfied. For our
purposes the solution to 〈Qs, φ〉 is an assignment α∗ to the
choice variables in Qs which maximises the evaluation.4

α∗ = argmax
α

eval(Qs, φ, α)

Note that the above definition of SSAT is more general
than we require. In planning it makes more sense that the
order of evaluation be determined by the consequence rela-
tion between an action and its outcomes, rather than by the
order in which variables occur in a quantifier list. This is be-
cause: (1) uncertainty is limited to the choice nature makes
when an action is executed, and (2) only one action can be
executed in a given timestep and only one action outcome
can occur. We will take advantage of (2) below as we use
SSAT formula to encode a linear, resp. contingent, planning
problem.

SSAT Encoding of the Probabilistic Plangraph
We devise evalp (Algorithm 2), an evaluation algorithm spe-
cific to an SSAT encoding of an n-timestep probabilistic
plangraph. We adopt the notations at ∈ At, pt ∈ Pt,
and ot ∈ Ot for action, proposition and choice symbols at
timestep t. For the composition of Qs, each pt and at sym-
bol is a choice variable, and each ot ∈ Ot is a chance vari-
able quantified according to Rrot where r := µa(o) – i.e.,
the probability of ot occurring if its corresponding stochas-
tic action is executed. For evalp the order in which variables
occur in Qs is not important. Leaving the logical structure of
the planning problem φ aside for the moment, since it will

4Note that the order in which variables appear in the quantifier
list is important. This is because a formula is essentially copied in
the evaluation rule for the random quantifier. Consequently, an ex-
istentially quantified variable v that occurs after a randomly quan-
tified variable v′ in Qs can take on a different value for the case
that v′ = > and the case v′ = ⊥.



be captured in the CNF φ to be described in a moment, evalp
is defined as follows:

Algorithm 2 Evaluating SSAT
evalp(•, φ, α) = 0 if φ contains the empty clause
evalp(•, φ, α) = 1 if there are no clauses in φ
evalp(∃pt : Qs, φ, α) = evalp(Qs, φ[pt = α(pt)], α)
evalp(Rrot : Qs, φ, α) = evalp(Qs, φ, α)
evalp(∃at : Qs, φ, α) =

Σot
i∈Ot(at)ri · evalp(Qs,
φ[at = α(at),
oti = >,
∀otj ∈ Ot(at). if (j 6= i) then otj = ⊥],

α)
where symbol oti is quantified Rri

The planning problem is thus to find α∗ so that

α∗ = argmax
α

evalp(Qs, φ, α)

As a final step in modelling an n-timestep probabilistic
planning problem in SSAT, we require the CNF φ, the con-
junct of the axioms we enumerate below. Here, we adopt the
notation ∃!p ∈ P.p to mean that exactly one of the proposi-
tions in the set P must be true.

1. Starting state and goal axioms: To encode the starting
state we have the formula ∀p0 ∈ s0.p0, and similarly for the
goal we have ∀p ∈ G.pn.

2. Nature’s choice axioms: For each action at ∈ At,
we have the formula at → ∃!ot ∈ O(at).ot, which says
that when action at is executed, exactly one of the random
outcomes associated with it must occur.

3. Action precondition axioms: For each action at ∈ At,
we have the formula at →

∧
p∈poss(at) p

t, which says action
at cannot be executed unless its precondition is satisfied.
We also assert action exclusivity, thus the action physics are
such that only one action can be executed at any timestep.
To achieve this, for each At ∈ A, we have the formula
∃!at ∈ At.at.

4. Successor states axioms: We require formulae that
encapsulate how the truth value of propositions pt ∈ Pt
change from state to state. In the case that a proposition is
effected by an action, for each stochastic action at ∈ At
and choices associated with this ot ∈ O(at), we have the
formula

(at ∧ ot → (
∧

p∈add(o)

pt+1 ∧
∧

p∈delete(o)

pt+1)) (1)

We also require frame axioms which state that the truth value
of a proposition is only changed by nature’s choices which
have that proposition in their add or delete lists. To this pur-
pose we define make(p) ⊆ A × O to be the set of pairs
of actions and outcomes so that, for each element 〈a, o〉 ∈
make(p) we have that o is a choice available to nature when
we execute a and also that p ∈ add(o). break(p) ⊆ A × O
is defined similarly only in this case p ∈ delete(o). For each
pt ∈ Pt for t = 1..n we have the formula

(pt 6↔ pt−1)↔ (¬pt−1 ∧
∨
〈a,o〉∈make(p)(a

t−1 ∧ ot−1))∨
(pt−1 ∧

∨
〈a,o〉∈break(p)(a

t−1 ∧ ot−1))
(2)

Generating Linear Plans with SLS
A key component of our approach is an SLS-based SAT
solver we developed called SLSPLAN. In constructing a
contingent plan, PSLSPLAN repeatedly invokes this pro-
cedure on different determinisations of the problem at hand.
Each invocation yields a linear solution plan (where one ex-
ists) that achieves the goal with non-zero probability. Along
the same lines as GSAT (Selman, Levesque, & Mitchell
1992), SLSPLAN is a typical SLS solver in that it starts
with an assignment α of truth values to the variables in the
given formula φ, and iteratively improves that assignment
using the local knowledge of the search space. In particular,
at every iteration the current assignment α is perturbed to a
neighboring assignment αv by flipping the value of a vari-
able v. Many heuristics have been developed to determine
what variable to flip (Hoos & Stützle 2004). We have opted
for a dynamic local search (i.e., clause weighting) scheme
that has been used in a wide range of modern SAT solvers.
It is a good strategy to avoid having the search stagnate in
local optima (Hoos & Stützle 2004).

Algorithm 3 gives the pseudo code for SLSPLAN. The
local search takes as arguments a CNF representation φ of
a determinisation of the planning problem, and an upper
bound on the number of iterations that can be performed
maxSteps. It also takes a contingent plan π, which is in-
terpreted as a collection of solutions that SLSPLAN should
avoid.5 The local search then constructs its initial assign-
ment α of truth values to all variables in φ so that: (1) up to

5In our setting this is the set of linear solution plans that have

Algorithm 3 SLSPLAN(φ, maxSteps, π)
1: generate an initial assignment α;
2: initialise the weight λi of each clause ci to 1;
3: for step = 1 to maxSteps do
4: if α satisfies φ then
5: return α as the solution;
6: else if within walk probability wp then
7: Randomly select a non-unary unsatisfied clause c;
8: Satisfy c by randomly flipping the value of a vari-

able in α, but avoid solutions from π;
9: else

10: if there exists a variable v s.t.
Σi λici(αv) < Σi λici(α) and αv /∈ π

then
11: Flip the value of v and update α;
12: else
13: add 1 to the weight of each unsatisfied clause;
14: end if
15: end if
16: end for
17: return ‘no solution found’;



the planning horizon n, at each timestep t ∈ [1 . . . n − 1],
propositions true in st are chosen uniformly at random from
P , (2) s0 := s0, (3) state sn is also random except G ⊆ sn,
and (4) an action is chosen uniformly at random fromA and
executed at each timestep.

The heuristic Algorithm 3 used to guide search is typical
of a dynamic local search. It comprises a weighting scheme
that associates each clause ci in φ with a numerical weight
λi. Initially all weights are 1. With a little notational abuse,
we can treat the ith clause ci as a 0/1 function so that ci(α) =
0 if ci is satisfied by α and ci(α) = 1 otherwise. SLSPLAN
uses the sum of weights of all unsatisfied clauses under the
current assignment α as its objective function to greedily
move to a “better” solution. More formally, we have that the
value of assignment α is Σi λici(α). Line 13 of Algorithm 3
provides for the clause weights to be adjusted dynamically
during search in order to modify the landscape to avoid and
otherwise escape local minima.

At each iteration, SLSPLAN selects and flips a variable
v that strictly minimises the cost function Σi λici(α). As a
detail, we break ties by selecting the least recently flipped
candidate variable. The solver also ensures that flipping
v will not lead to an assignment in the given contingent
plan π. If no strict improving variable exists, the weights
of all unsatisfied clauses are increased by 1. Although
periodically reducing clause weights improves the perfor-
mance of many weighted SLS solvers (Wu & Wah 2000;
Hutter, Tompkins, & Hoos 2002; Thornton et al. 2004), we
find that it is not the case for SLSPLAN. Rather, we in-
clude the random walk heuristic into SLSPLAN to weaken
its determinism in searching for candidate variables. Within
a probability wp, the solver attempts to satisfy an unsatis-
fied clause by flipping the truth value of a randomly selected
variable in that clause; otherwise it selects and flips a vari-
able using the weighting heuristic described above. We find
that the performance of SLSPLAN with probabilistic ran-
dom walks is significantly improved. Moreover, this strat-
egy is very robust in contrast to the high sensitivity of the
parameter(s) used in existing weighted SLS solvers to con-
trol when clause weights are reduced.

Finally, the reason we have developed SLSPLAN, as op-
posed to adopting an off-the-shelf local search procedure,
is because we are targeting planning problems specifically
(rather than SAT instances more generally). In particular,
in SLSPLAN we take advantage of the opportunity to ex-
ploit problem structures that are otherwise obfuscated in a
CNF representation of the problem. In the following we de-
scribe how SLSPLAN explicitly handles some of the plan-
ning constraints when selecting a variable to flip.

Mutex Control and Constraint Propagation
Recent research has shown that letting SLS-based SAT
solvers explicitly handle constraints such as ∃!p ∈ P.p or
p →

∧
i qi improves their performance significantly over

implicitly encoding these into the CNF (Frisch & Peug-
niez 2001; Ansótegui et al. 2003; Pham et al. 2005;

previously been reported to PSLSPLAN by invocations of SLS-
PLAN.

Pham, Thornton, & Sattar 2007). In SLSPLAN we annotate
the problem φ with compact representations of the planning
constraints that assert the exclusivity of actions and their
outcomes. During the search, SLSPLAN maintains these
mutex constraints in a similar manner to (Pham et al. 2005):
setting a current false variable of a mutex constraint to true
and at the same setting the current true variable of that con-
straint to false. In addition, as each outcome is unique and
is associated with a unique action, if an outcome is flipped
to true then SLSPLAN will immediately enforce that its as-
sociated action is also true as part of the nature’s choices
axioms. As both the outcome and its associated action are
now true, SLSPLAN then performs a constraint propaga-
tion to ensure that the action effect component of the suc-
cessor states axiom (described in Eq 1) is satisfied – i.e. en-
forcing propositions in the add and delete lists associated
with the action to be true if they were not.6

PSLSPLAN

We now describe our contingent planner PSLSPLAN, that
repeatedly invokes our SAT procedure SLSPLAN on deter-
minisations of the probabilistic planning problem at hand in
order to generate a collection of linear plans, each of which
is merged into a single contingent plan π. The pseudo code
is given in Algorithm 4. Initially, PSLSPLAN generates
an SSAT representation 〈Qs, φ〉 of the original plangraph
by (1) generating and pruning the n-timestep probabilistic
plangraph from the original problem specification, and (2)
translating this graph into SSAT. The algorithm then itera-
tively generates a determinisation φ′ of the SSAT problem
by sampling the truth values of a number m of the random
variables while respecting the planning constraints. At this
point all the remaining variables in φ′ are treated as choice
variables, which means that our SLSPLAN procedure can
determine the values of some random variables whose truth
values were not sampled, by treating them as if they were
existentially quantified.

Apart from our use of an SSAT-based SLS procedure
SLSPLAN to solve probabilistic problems, a key feature
of PSLSPLAN is the way random variables, and hence the
probabilistic effects of actions, are treated by the algorithm.
Over successive invocations of SLSPLAN, the truth values
of random variables can be increasingly determined by sam-
pling. Thus, for the first few iterations we can have that
SLSPLAN decides the truth values of random variables as
if they were existentially quantified. In later iterations, we
can have that these are determined wholly by sampling. Our
strategy of allowing the SLS procedure to determine the as-
signment to some chance variables has two important con-
sequences: (1) if the only plans that achieve the goal do so
with a low probability, we are able to efficiently find them at
the outset, and (2) over time the plan search can be focused
on planning for likely contingencies.

6We find that constraint propagation for actions precondition
axioms, which have the same form as effect axioms, are not effec-
tive.



Experimental Evaluation
We implemented the PSLSPLAN planner in C++ and eval-
uate our implementation here using a number of problems
from the probabilistic track of the 5th International Planning
Competition (IPC-5, 2006). In the following sub-sections,
we briefly describe the problem domains used in our evalu-
ation of PSLSPLAN, and then present and discuss the re-
sults.

Benchmark Problem Domains
We selected problems from the following 4 domains out
of 9 used in the probabilistic track from IPC-5: blocks-
world, exploding-blocks-world, elevator, and tireworld. We
omitted the other 5 domains: random, zenoworld, drive,
pitchcatch, and schedule, because translating these problems
into the standard probabilistic planning formalism was too
clumsy. Below we use the same naming/numbering scheme
from the competition to label benchmark instances, append-
ing −tn where n is the planning horizon.7 Below, we give
brief summaries of the domains we have considered.
The blocks-world is a stochastic version of the classic
blocks-world planning benchmark with probabilistic ac-
tions. The key property that makes this domain hard is a
group of probabilistic actions that allow for a stack of blocks
to be held. Being able to hold a stack of blocks makes
achieving the goal easy in few timesteps. However, when
holding a stack, placing a block A on another block B fails
90% of the time, resulting in A usually being stacked on the
table. Thus, although holding a stack of blocks yields a short
linear plan to the goal, the probability of success in this case
is small.
The exploding-blocks-world domain is a stochastic version

7Details of all the instances, problem files and domain files
from the IPC-5 competition are available at www.ldc.usb.ve/
˜bonet/ipc5/.

Algorithm 4 PSLSPLAN(Problem)
1: generate and prune the n-timestep probabilistic plan-

graph for the given Problem;
2: generate the SSAT representation 〈Qs, φ〉 of the prob-

lem posed by the probabilistic plangraph;
3: initialise the contingent plan π to be empty;
4: m := 0;
5: repeat
6: sample an assignment α′ to m chance variables (cho-

sen uniformly at random) from Qs such that the
choice axioms at → ∃!ot ∈ O(at).ot in φ can never
be violated;

7: compute φ′ by simplifying φ according to α′;
8: α := SLSPLAN(φ′, 106, π);
9: if evalp(Qs, φ, α) > 0 then

10: add assignment α to plan π;
11: end if
12: m := m+ 1;
13: until ‘user terminates plan search’
14: return π;

of the classic blocks-world in which blocks can (probabilis-
tically) detonate when they are placed on the table or another
block. The result of a detonation is that the object under a
detonated block explodes. No block can be stacked on an
exploded object. Blocks are more likely to detonate when
they are placed on the table, thus plans which avoid placing
blocks on the table are more likely to succeed.
The elevator domain comprises an n story building where
each floor consists of an m length list of positions some of
which are adjacent to an elevator shaft. If position i at floor
j is adjacent to a shaft, then, where they exist, positions i at
floors j±1 are also adjacent to that shaft. There is a passen-
ger who starts in the first position of the first floor, and can
either (1) move to an adjacent position, (2) use the elevator
if she is in a position adjacent to a shaft, or (3) collect a coin.
In the case that she uses an elevator, she can go to a specific
position in the floor above (or below). All actions associated
with using the elevator are deterministic, however specific
positions at specific floors are gated. Moving out of a gated
position to an adjacent position on the same floor probabilis-
tically results in the passenger being transported back to the
first position on the first floor. The goal is achieved when the
passenger has collected all the coins.
The tireworld problem requires that we guide a vehicle
across a set of locations to a goal location. Moving from one
location to another can result in a flat tire in which case the
vehicle can no longer move until the tire is changed. The ve-
hicle can carry only one spare tire, and can acquire a spare at
designated locations. Although, the probability of success-
fully changing one tire is .5, the action can be repeated until
the desired effect occurs.

Some of the competition instances for the domains in
which we evaluated PSLSPLAN do not feature in our ex-
periments. In particular, we were unable to benchmark
PSLSPLAN on the blocks-world and exploding-blocks-
world problems 11 . . . 15 because our computer running
PGRAPHPLAN runs out of memory (2 Gigabytes) before
generating the plangraph.

Results and Discussion
Our experiments were conducted on an AMD Opteron(tm)
64 Processor 2.6GHz machine with 2 gigabytes of RAM.
The results are tabulated in Table 1. We set wp to 0.01
in all our experiments, and dynamically adjusted maxSteps
so that it is two times the maximum number of iterations
SLSPLAN has taken to solve φ in a given run of PSLS-
PLAN, or 100 thousand, whichever is greater. In our ex-
periments, we always terminate PSLSPLAN after 700 sec-
onds. PSLSPLAN could not solve any problems in under
10 minutes for blocks-world problems 6 . . . 11, exploding
blocks-world problems 6 . . . 11, and elevator 10 . . . 15. In
Table 1 we do not report those results.

In the first place our experimental results demonstrate the
problem features that make PSLSPLAN perform well. In
particular: (1) If there are few, or no, low quality linear
plans that achieve the goal, then we find good solutions
quickly. This is the case in elevator problems after pre-
processing with plangraph techniques; (2) If there are many
linear plans, only a few of which are good quality, then by



Instances optimal 10% sampled 50% sampled acc sampled
qual secs qual secs qual secs qual secs

tw-p01-t10 0.21 0.02 6.22e-03 0.01 0.03 0.15 n/a 700
tw-p01-t5 0.13 0.00 0.13 0.77 0.13 83.87 0.13 4.56
tw-p02-t1 1.00 0.00 1.00 0.35 1.00 0.13 1.00 0.00
tw-p03-t2 0.60 0.00 0.60 0.13 0.60 0.43 0.60 0.06
tw-p03-t7 0.97 0.01 0.03 0.00 0.06 0.02 n/a 700
tw-p04-t3 0.36 0.00 0.36 0.14 0.36 4.10 0.36 0.36
tw-p04-t8 0.89 0.16 0.03 0.45 0.03 0.04 n/a 700
tw-p05-t2 0.60 0.00 0.60 0.04 0.60 1.33 0.60 0.07
tw-p05-t7 0.97 0.04 0.03 0.01 0.10 0.03 n/a 700
tw-p06-t2 0.60 0.00 0.60 0.02 0.60 0.26 0.60 0.12
tw-p06-t7 0.97 0.05 0.13 0.02 0.09 0.17 n/a 700
tw-p07-t3 0.36 0.00 0.36 0.60 0.14 36.37 0.36 0.01
tw-p07-t8 0.89 0.06 0.02 0.02 0.03 0.78 n/a 700
tw-p08-t2 0.60 0.00 0.60 0.03 0.60 0.00 0.60 0.02
tw-p08-t7 0.82 0.14 0.05 0.09 0.04 0.01 n/a 700
tw-p09-t3 0.36 0.00 0.36 0.13 0.36 0.62 0.36 0.02
tw-p09-t8 0.81 0.21 0.04 0.06 0.06 0.04 n/a 700
tw-p10-t1 1.00 0.00 1.00 0.05 1.00 0.01 1.00 0.00
tw-p11-t2 0.60 0.00 0.60 0.00 0.60 0.24 0.60 0.09
tw-p11-t7 0.97 0.03 0.16 0.08 0.03 0.02 n/a 700
tw-p12-t1 1.00 0.00 1.00 0.03 1.00 0.13 1.00 0.00
tw-p13-t2 0.60 0.00 0.60 0.02 0.60 0.50 0.60 0.00
tw-p13-t7 0.97 1.71 0.05 0.36 0.09 0.17 n/a 700
tw-p14-t2 0.60 0.00 0.60 0.00 0.60 0.29 0.60 0.00
tw-p14-t7 0.78 1.15 0.05 0.14 0.07 0.21 n/a 700
tw-p15-t3 0.36 0.00 0.36 0.39 0.36 1.71 0.36 0.03
tw-p15-t8 0.81 0.11 0.05 0.03 0.03 0.43 n/a 700

bw-p01-t12 0.11 0.83 8.34e-05 5.25 1.78e-04 5.04 n/a 700
bw-p01-t7 7.91e-04 0.01 7.91e-04 0.57 n/a 700 n/a 700
bw-p02-t10 6.26e-03 0.09 n/a 700 n/a 700 n/a 700
bw-p02-t15 0.52 2.56 n/a 700 n/a 700 n/a 700
bw-p03-t14 0.61 1.14 n/a 700 n/a 700 n/a 700
bw-p03-t9 0.03 0.04 3.34e-03 23.66 n/a 700 n/a 700
bw-p04-t10 0.01 0.09 n/a 700 n/a 700 n/a 700
bw-p04-t15 0.30 2.40 2.64e-04 31.42 n/a 700 n/a 700
bw-p05-t14 0.61 0.86 0.02 3.81 n/a 700 n/a 700
bw-p05-t9 0.03 0.03 n/a 700 n/a 700 n/a 700

ebw-p01-t6 1.00 0.00 0.06 0.76 n/a 700 n/a 700
ebw-p02-t4 1.00 0.00 0.19 2.76 0.10 119.89 0.09 8.22
ebw-p03-t6 1.00 0.00 n/a 700 n/a 700 n/a 700
ebw-p04-t12 0.36 0.01 n/a 700 n/a 700 n/a 700
ebw-p04-t17 0.54 0.07 n/a 700 n/a 700 n/a 700
ebw-p05-t2 1.00 0.00 1.00 1.51 1.00 0.00 1.00 0.02

el-p01-t13 1.00 0.02 0.50 0.79 n/a 700 n/a 700
el-p02-t8 1.00 0.00 1.00 0.00 1.00 0.01 1.00 36.13

el-p03-t15 1.00 0.01 n/a 700 n/a 700 n/a 700
el-p04-t13 1.00 0.00 1.00 0.34 n/a 700 n/a 700
el-p05-t11 1.00 0.01 n/a 700 n/a 700 n/a 700
el-p06-t20 0.50 0.15 n/a 700 n/a 700 n/a 700
el-p06-t25 1.00 0.20 n/a 700 n/a 700 n/a 700
el-p07-t22 1.00 0.19 n/a 700 n/a 700 n/a 700
el-p08-t30 0.50 1.31 n/a 700 n/a 700 n/a 700
el-p08-t35 n/a 700 n/a 700 n/a 700 n/a 700
el-p09-t29 0.50 0.74 n/a 700 n/a 700 n/a 700
el-p09-t34 0.50 1.65 n/a 700 n/a 700 n/a 700

Table 1: Results of evaluating PSLSPLAN and PGRAPH-
PLAN in IPC problems. Column optimal lists the quality
(qual) and time in seconds (secs) for PGRAPHPLAN. Column
50% sampled list performance statistics for PSLSPLAN in
the case that n from Algorithm 4 is fixed to 50. Column
10% sampled list for PSLSPLAN with n fixed to 10. Col-
umn acc sampled lists for the case that an equal number of
calls to SLSPLAN occurs for n ∈ {1 . . . 50}.

sampling the value of many chance variables, SLSPLAN
quickly finds the good solutions. This is observed particu-
larly for instances of tireworld.

We find that the biggest cost of our approach is from per-
forming mutex control and constraint propagation in SLS-
PLAN. Indeed, PSLSPLAN performs best in the elevator
and tireworld domains. For both of these domains, instances
have relatively few (compared with variations on blocks-
world) actions to choose from at most timesteps. In the case

of elevator this is due mostly to the pruning of the solution
space we achieve using probabilistic plangraph techniques.
For tireworld, this is a natural feature of the domain.

For the parameter settings we choose, we found that
PSLSPLAN does not compute good quality plans for prob-
lems where an optimal solution accommodates many in-
terrelated contingencies. This can be seen by the qual-
ity of the plan PSLSPLAN finds for blocks-world in-
stances. For these problems there are many linear plans
that achieve the goal with low probability. SLSPLAN gen-
erated short linear plans by exploiting the ability to hold
stacks of blocks, or otherwise became stuck in local minima.
When PSLSPLAN combined the linear plans generated by
PSLSPLAN, the resulting contingent plan was not effec-
tive. Sampling the chance variables does not mitigate this
problem, as we find that high sampling in this case means
that many of the CNF passed to SLSPLAN by PSLSPLAN
were unsatisfiable.

Overall, the performance of PSLSPLAN is competitive
with that of other entrants in the planning competition in
small to medium sized problems from all domains we have
examined except for the blocks-world. In larger benchmark
problems, PSLSPLAN was unable to attempt the problems
either (1) Because we could not generate the SSAT encod-
ing of the plangraph, or (2) Because it takes more than 700
seconds to find a plan that achieves the goal.

Related & Future Work
PSLSPLAN is related via the SLSPLAN procedure to re-
cent developments in the planning-as-satisfiability paradigm
for the deterministic case. In particular, SLSPLAN is re-
lated to SATPLAN, a deterministic planner that encodes
n-stage problems posed by a plangraph as a propositional
CNF formula. The state-of-the-art DPLL-based SAT solver
SIEGE is then used to find a plan, or otherwise prove that
one does not exists (Kautz, Selman, & Hoffmann 2006;
Kautz & Selman 1999). From a reasoning under uncer-
tainty perspective, related work includes the general SSAT
solvers EVALSSAT and RANDEVALSSAT (Littman, Majer-
cik, & Pitassi 2001), and the existing approaches to prob-
abilistic planning with SSAT problem encodings: MAX-
PLAN (Majercik & Littman 1998a), DC-SSAT (Majercik &
Boots 2005), Zander (Majercik & Littman 2003), and APP-
SAT (Majercik 2006). In Table 2 we relate PSLSPLAN
(last row) to these other solvers in terms of the type of solu-
tion method used, the class of problem targeted, and whether
or not the solution technique is exact or approximate.
Of the available SSAT-based probabilistic planners,
APPSSAT is most similar to PSLSPLAN. APPSSAT
iterates over the set of assignments of truth values to the
random variables in the problem at hand, from most likely
to least likely, and for each assignment fixes the truth values
of the random variables in the CNF. APPSSAT then uses
the DPLL-based SAT solver ZCHAFF to solve the resulting
CNF. Thus, for a given horizon and for each possible choice
of outcomes from actions that nature can make, ZCHAFF
builds a linear plan (if one exists) that achieves the goal. As
with PSLSPLAN, successively generated linear plans are
added to a single contingent plan. APPSSAT is inefficient



Table 2: Existing approaches to contingent-planning-as-
satisfiability. Solver: lists the names of the solvers. Class:
lists whether the solver is based on DPLL, a modified ver-
sion of this M-DPLL, or SLS. Prob: lists whether the solver
targets unobservable, partially observable, fully observable,
or classical deterministic planning problems, or SSAT prob-
lems in general. Opt: lists whether the solution method pro-
duces optimal (O), or approximate (A) solutions.

Solver Class Prob Opt
MAXPLAN M-DPLL Unobservable O
ZANDER M-DPLL Partially Observable O
DC-SSAT M-DPLL Fully Observable8 O
APPSSAT DPLL Partially Observable A
EVALSSAT M-DPLL SSAT O
RANDEVALSSAT SLS SSAT A
PSLSPLAN SLS Fully Observable A

in situations where the only linear plans that achieve a
goal do so with a low probability. It is also inefficient
when the solution space is large and ZCHAFF spends all
its time generating good but unrelated linear plans, rather
than a group of interrelated plans which form an excellent
contingent plan.

From an SLS standpoint there are a number of direc-
tions we could take our work in the future to make it more
effective. For instance, we did not explore the use of a
novelty+ mechanism for escaping local minima during the
search (McAllester, Selman, & Kautz 1997). It would be
very interesting to see how an unweighted SLS that uses
Novelty+ — or a variation of this such as AdaptNovely+ —
to escape from minima competes with our approach that uses
clause weights.

From the standpoint of encoding the planning problem as
SSAT there are a number of improvements that our work
should consider in the future. For instance, we could include
the pairwise neediness constraint from (Blum & Langford
1999) in the CNF component of our SSAT problem encod-
ing, or perhaps as a constraint that is maintained by SLS-
PLAN. Respecting such constraints should greatly effect
plan search time in domains where a condition has to hold
true until some milestone is achieved. Along the same lines,
it might be a good idea to compute and then include mutex
constraints between propositions at the layers of the plan-
graph. Essentially, in the future we should examine strate-
gies for mutex control and constraint propagation which bet-
ter address the trade-off between guiding the search, and the
speed of the search.

Acknowledgements
Thanks to Stephen Majercik for useful discussions. NICTA
is funded by the Australian Government as represented
by the Department of Broadband, Communications and
the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program.

References
Ansótegui, C.; Larrubia, J.; Li, C. M.; and Manyà, F. 2003.
Mv-Satz: A SAT solver for many-valued clausal forms. In
JIM.

Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence (90):281–300.
Blum, A., and Langford, J. 1999. Probabilistic planning in
the graphplan framework. In ECP, 319–332.
Chen, Y.; Xing, Z.; and Zhang, W. 2007. Long-distance
mutual exclusion for propositional planning. In Proc. IJ-
CAI.
Frisch, A. M., and Peugniez, T. J. 2001. Solving
non-Boolean satisfiability problems with stochastic local
search. In IJCAI, 282–290.
Hoos, H. H., and Stützle, T. 2004. Stochastic Local Search:
Foundations and Applications. Morgan Kaufmann.
Hutter, F.; Tompkins, D. A.; and Hoos, H. H. 2002. Scal-
ing and probabilistic smoothing: Efficient dynamic local
search for SAT. In CP, 233–248.
Kautz, H. A., and Selman, B. 1999. Unifying SAT-based
and Graph-based planning. In IJCAI, 318–325.
Kautz, H. A.; Selman, B.; and Hoffmann, J. 2006. SatPlan:
Planning as satisfiability. In In Proc. Abstracts of the 5th
International Planning Competition.
Littman, M. L.; Goldsmith, J.; and Mundhenk, M. 1998.
The computational complexity of probabilistic planning.
Journal of Artificial Intelligence Research 9:1–36.
Littman, M. L.; Majercik, S. M.; and Pitassi, T. 2001.
Stochastic boolean satisfiability. Journal of Automated
Reasoning 27(3):251–296.
Majercik, S. M., and Boots, B. 2005. DC-SSAT: A divide-
and-conquer approach to solving stochastic satisfiability
problems efficiently. In AAAI, 416–422.
Majercik, S. M., and Littman, M. L. 1998a. MAXPLAN:
A new approach to probabilistic planning. In AIPS, 86–93.
Majercik, S. M., and Littman, M. L. 1998b. Using
caching to solve larger probabilistic planning problems. In
AAAI/IAAI, 954–959.
Majercik, S. M., and Littman, M. L. 2003. Contingent
planning under uncertainty via stochastic satisfiability. Ar-
tif. Intell. 147(1-2):119–162.
Majercik, S. M. 2006. APPSSAT: Approximate probabilis-
tic planning using stochastic satisfiability. International
Journal of Approximate Reasoning.
McAllester, D. A.; Selman, B.; and Kautz, H. A. 1997.
Evidence for invariants in local search. In AAAI, 321–326.
Pham, D. N.; Thornton, J.; Sattar, A.; and Ishtaiwi, A.
2005. SAT-based versus CSP-based constraint weighting
for satisfiability. In AAAI, 455–460.
Pham, D. N.; Thornton, J.; and Sattar, A. 2007. Building
structure into local search for SAT. In IJCAI, 2359–2364.
Pham, D. N.; Thornton, J.; and Sattar, A. 2008. Efficiently
exploiting dependencies in local search for SAT. In AAAI,
to appear.
Selman, B.; Kautz, H. A.; and Cohen, B. 1994. Noise
strategies for improving local search. In AAAI, 337–343.
Selman, B.; Levesque, H.; and Mitchell, D. 1992. A new
method for solving hard satisfiability problems. In AAAI,
440–446.



Thornton, J.; Pham, D. N.; Bain, S.; and Ferreira Jr., V.
2004. Additive versus multiplicative clause weighting for
SAT. In AAAI, 191–196.
Wu, Z., and Wah, B. W. 2000. An efficient global-search
strategy in discrete Lagrangian methods for solving hard
satisfiability problems. In AAAI, 310–315.


